Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 69(6): 823-832, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38218634

RESUMO

Global warming during the Miocene Climate Optimum (MCO, ∼17-14 million years ago) is associated with massive carbon emissions sourced from the flood basalt volcanism and ocean crustal production. However, the perturbation of tectonic carbon degassing on the interaction between climate change and carbon cycle remains unclear. Here, through time-evolutive phase analysis of new and published high-resolution benthic foraminiferal oxygen (δ18O) and carbon (δ13C) isotope records from the global ocean, we find that variations in the marine carbon cycle lead the climate-cryosphere system (δ13C-lead-δ18O) on 405,000-year eccentricity timescales during the MCO. This is in contrast to the previously reported climate-lead-carbon (δ18O-lead-δ13C) scenario during most of the Oligo-Miocene (∼34-6 million years ago). Further sensitivity analysis and model simulations suggest that the elevated atmospheric CO2 concentrations and the resulting greenhouse effect strengthened the low-latitude hydrological cycle during the MCO, accelerating the response of marine carbon cycle to eccentricity forcing. Tropical climate processes played a more important role in regulating carbon-cycle variations when Earth's climate was in a warm regime, as opposed to the dominant influence of polar ice-sheet dynamics during the Plio-Pleistocene (after ∼6 million years ago).

2.
Sci Adv ; 9(14): eade5466, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027462

RESUMO

Superimposed on long-term late Paleocene-early Eocene warming (~59 to 52 million years ago), Earth's climate experienced a series of abrupt perturbations, characterized by massive carbon input into the ocean-atmosphere system and global warming. Here, we examine the three most punctuated events of this period, the Paleocene-Eocene Thermal Maximum and Eocene Thermal Maximum 2 and 3, to probe whether they were initiated by climate-driven carbon cycle tipping points. Specifically, we analyze the dynamics of climate and carbon cycle indicators acquired from marine sediments to detect changes in Earth system resilience and to identify positive feedbacks. Our analyses suggest a loss of Earth system resilience toward all three events. Moreover, dynamic convergent cross mapping reveals intensifying coupling between the carbon cycle and climate during the long-term warming trend, supporting increasingly dominant climate forcing of carbon cycle dynamics during the Early Eocene Climatic Optimum when these recurrent global warming events became more frequent.

3.
Nat Commun ; 14(1): 424, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702814

RESUMO

It has long been hypothesized that climate can modify both the pattern and magnitude of erosion in mountainous landscapes, thereby controlling morphology, rates of deformation, and potentially modulating global carbon and nutrient cycles through weathering feedbacks. Although conceptually appealing, geologic evidence for a direct climatic control on erosion has remained ambiguous owing to a lack of high-resolution, long-term terrestrial records and suitable field sites. Here we provide direct terrestrial field evidence for long-term synchrony between erosion rates and Milankovitch-driven, 400-kyr eccentricity cycles using a Plio-Pleistocene cosmogenic radionuclide paleo-erosion rate record from the southern Central Andes. The observed climate-erosion coupling across multiple orbital cycles, when combined with results from the intermediate complexity climate model CLIMBER-2, are consistent with the hypothesis that relatively modest fluctuations in precipitation can cause synchronous and nonlinear responses in erosion rates as landscapes adjust to ever-evolving hydrologic boundary conditions imposed by oscillating climate regimes.

4.
Sci Rep ; 12(1): 18471, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323766

RESUMO

New data on the foraminifers and the regional geological setting of the Trachilos sediments (NW Crete, Greece) from which Gierlinski et al. (Proc Geol Assoc 128: 697-710, 2017) described hominin-like footprints show that the published 6.05 Ma-shallow marine interpretation is incorrect. In our new interpretation, the Trachilos succession is Late Pliocene and part of a shallowing marine series that became subaerially exposed some 3 millions of years ago. Placed in a larger geological context, Crete was an island during the Late Pliocene and separated by ~ 100 km of open sea from the nearest European mainland, and therefore out of reach of Late Pliocene hominins.


Assuntos
Hominidae , Animais , Grécia , Oceanos e Mares
5.
Sci Rep ; 11(1): 14023, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234170

RESUMO

The clumped isotope composition (Δ47, the anomaly of the mass 47 isotopologue relative to the abundance expected from a random isotope distribution) of CO2 has been suggested as an additional tracer for gross CO2 fluxes. However, the effect of photosynthetic gas exchange on Δ47 has not been directly determined and two indirect/conceptual studies reported contradicting results. In this study, we quantify the effect of photosynthetic gas exchange on Δ47 of CO2 using leaf cuvette experiments with one C4 and two C3 plants. The experimental results are supported by calculations with a leaf cuvette model. Our results demonstrate the important roles of the Δ47 value of CO2 entering the leaf, kinetic fractionation as CO2 diffuses into, and out of the leaf and CO2-H2O isotope exchange with leaf water. We experimentally confirm the previously suggested dependence of Δ47 of CO2 in the air surrounding a leaf on the stomatal conductance and back-diffusion flux. Gas exchange can enrich or deplete the Δ47 of CO2 depending on the Δ47 of CO2 entering the leaf and the fraction of CO2 exchanged with leaf water and diffused back to the atmosphere, but under typical ambient conditions, it will lead to a decrease in Δ47.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Algoritmos , Isótopos de Carbono , Modelos Teóricos , Isótopos de Oxigênio , Fenômenos Fisiológicos Vegetais
6.
Science ; 369(6509): 1383-1387, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913105

RESUMO

Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.

7.
Paleoceanogr Paleoclimatol ; 34(7): 1139-1156, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31598587

RESUMO

During the last glacial period, climate conditions in the North Atlantic region were determined by the alternation of relatively warm interstadials and relatively cool stadials, with superimposed rapid warming (Dansgaard-Oeschger) and cooling (Heinrich) events. So far little is known about the impact of these rapid climate shifts on the seasonal variations in sea surface temperature (SST) within the North Atlantic region. Here, we present a high-resolution seasonal SST record for the past 152 kyrs derived from Integrated Ocean Drilling Program "Shackleton" Site U1385, offshore Portugal. Assemblage counts of dinoflagellates cysts (dinocysts) in combination with a modern analog technique (MAT), and regression analyses were used for the reconstructions. We compare our records with previously published SST records from the same location obtained from the application of MAT on planktonic foraminifera. Our dinocyst-based reconstructions confirm the impression of the Greenland stadials and interstadials offshore the Portuguese margin and indicate increased seasonal contrast of temperature during the cold periods of the glacial cycle (average 9.0 °C, maximum 12.2 °C) with respect to present day (5.1 °C), due to strong winter cooling by up to 8.3 °C. Our seasonal temperature reconstructions are in line with previously published data, which showed increased seasonality due to strong winter cooling during the Younger Dryas and the Last Glacial Maximum over the European continent and North Atlantic region. In addition, we show that over longer time scales, increased seasonal contrasts of temperature remained characteristic of the colder phases of the glacial cycle.

8.
Science ; 365(6456): 926-929, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31467222

RESUMO

Astronomical calculations reveal the Solar System's dynamical evolution, including its chaoticity, and represent the backbone of cyclostratigraphy and astrochronology. An absolute, fully calibrated astronomical time scale has hitherto been hampered beyond ~50 million years before the present (Ma) because orbital calculations disagree before that age. Here, we present geologic data and a new astronomical solution (ZB18a) showing exceptional agreement from ~58 to 53 Ma. We provide a new absolute astrochronology up to 58 Ma and a new Paleocene-Eocene boundary age (56.01 ± 0.05 Ma). We show that the Paleocene-Eocene Thermal Maximum (PETM) onset occurred near a 405-thousand-year (kyr) eccentricity maximum, suggesting an orbital trigger. We also provide an independent PETM duration (170 ± 30 kyr) from onset to recovery inflection. Our astronomical solution requires a chaotic resonance transition at ~50 Ma in the Solar System's fundamental frequencies.

9.
Paleoceanogr Paleoclimatol ; 33(5): 511-529, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-31058259

RESUMO

Pelagic sediments from the subtropical South Atlantic Ocean contain geographically extensive Oligocene ooze and chalk layers that consist almost entirely of the calcareous nannofossil Braarudosphaera. Poor recovery and the lack of precise dating of these horizons in previous studies has limited the understanding of the number of acmes, their timing and durations, and therefore their likely cause. Here we present a high-resolution, astronomically tuned stratigraphy of Braarudosphaera oozes (29.5-27.9 Ma) from Ocean Drilling Program Site 1264 in the southeastern Atlantic Ocean. We identify seven episodes with highly abundant Braarudosphaera. Four of these acme events coincide with maxima and three with minima in the ~110 and 405-kyr paced eccentricity cycles. The longest lasting acme event corresponds to a pronounced minimum in the ~2.4-Myr eccentricity cycle. In the modern ocean, Braarudosphaera occurrences are limited to shallow marine and neritic settings, and the calcified coccospheres of Braarudosphaera are probably produced during a resting stage in the algal life cycle. Therefore, we hypothesize that the Oligocene acmes point to extensive and episodic (hyper) stratified surface water conditions, with a shallow pycnocline that may have served as a virtual seafloor and (partially/temporarily) prevented the coccospheres from sinking in the pelagic realm. We speculate that hyperstratification was either extended across large areas of the South Atlantic basin, through the formation of relatively hyposaline surface waters, or eddy contained through strong isopycnals at the base of eddies. Astronomical forcing of atmospheric and/or oceanic circulation could have triggered these conditions through either sustained rainfall over the open ocean and adjacent land masses or increased Agulhas Leakage.

10.
Proc Natl Acad Sci U S A ; 114(15): 3867-3872, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348211

RESUMO

Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO2 concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δ18O) record from the South Atlantic Ocean spanning an interval between 30.1 My and 17.1 My ago. The record displays major oscillations in deep-sea temperature and Antarctic ice volume in response to the ∼110-ky eccentricity modulation of precession. Conservative minimum ice volume estimates show that waxing and waning of at least ∼85 to 110% of the volume of the present East Antarctic Ice Sheet is required to explain many of the ∼110-ky cycles. Antarctic ice sheets were typically largest during repeated glacial cycles of the mid-Oligocene (∼28.0 My to ∼26.3 My ago) and across the Oligocene-Miocene Transition (∼23.0 My ago). However, the high-amplitude glacial-interglacial cycles of the mid-Oligocene are highly symmetrical, indicating a more direct response to eccentricity modulation of precession than their Early Miocene counterparts, which are distinctly asymmetrical-indicative of prolonged ice buildup and delayed, but rapid, glacial terminations. We hypothesize that the long-term transition to a warmer climate state with sawtooth-shaped glacial cycles in the Early Miocene was brought about by subsidence and glacial erosion in West Antarctica during the Late Oligocene and/or a change in the variability of atmospheric CO2 levels on astronomical time scales that is not yet captured in existing proxy reconstructions.

11.
Sci Rep ; 5: 12252, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26193070

RESUMO

The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7-4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ(13)C) and oxygen (δ(18)O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ(13)C and δ(18)O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate.

12.
Nat Commun ; 6: 7099, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26028337

RESUMO

Recurrent deposition of organic-rich sediment layers (sapropels) in the eastern Mediterranean Sea is caused by complex interactions between climatic and biogeochemical processes. Disentangling these influences is therefore important for Mediterranean palaeo-studies in particular, and for understanding ocean feedback processes in general. Crucially, sapropels are diagnostic of anoxic deep-water phases, which have been attributed to deep-water stagnation, enhanced biological production or both. Here we use an ocean-biogeochemical model to test the effects of commonly proposed climatic and biogeochemical causes for sapropel S1. Our results indicate that deep-water anoxia requires a long prelude of deep-water stagnation, with no particularly strong eutrophication. The model-derived time frame agrees with foraminiferal δ(13)C records that imply cessation of deep-water renewal from at least Heinrich event 1 to the early Holocene. The simulated low particulate organic carbon burial flux agrees with pre-sapropel reconstructions. Our results offer a mechanistic explanation of glacial-interglacial influence on sapropel formation.


Assuntos
Ciclo do Carbono , Sedimentos Geológicos , Camada de Gelo , Oxigênio , Água do Mar/química , Benzopiranos , Foraminíferos , Substâncias Húmicas , Mar Mediterrâneo , Modelos Teóricos , Datação Radiométrica
13.
Nat Commun ; 5: 2999, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24385005

RESUMO

Marine sediment records from the Oligocene and Miocene reveal clear 400,000-year climate cycles related to variations in orbital eccentricity. These cycles are also observed in the Plio-Pleistocene records of the global carbon cycle. However, they are absent from the Late Pleistocene ice-age record over the past 1.5 million years. Here we present a simulation of global ice volume over the past 5 million years with a coupled system of four three-dimensional ice-sheet models. Our simulation shows that the 400,000-year long eccentricity cycles of Antarctica vary coherently with δ(13)C data during the Pleistocene, suggesting that they drove the long-term carbon cycle changes throughout the past 35 million years. The 400,000-year response of Antarctica was eventually suppressed by the dominant 100,000-year glacial cycles of the large ice sheets in the Northern Hemisphere.

14.
Nature ; 443(7112): 687-91, 2006 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17036002

RESUMO

Mammals are among the fastest-radiating groups, being characterized by a mean species lifespan of the order of 2.5 million years (Myr). The basis for this characteristic timescale of origination, extinction and turnover is not well understood. Various studies have invoked climate change to explain mammalian species turnover, but other studies have either challenged or only partly confirmed the climate-turnover hypothesis. Here we use an exceptionally long (24.5-2.5 Myr ago), dense, and well-dated terrestrial record of rodent lineages from central Spain, and show the existence of turnover cycles with periods of 2.4-2.5 and 1.0 Myr. We link these cycles to low-frequency modulations of Milankovitch oscillations, and show that pulses of turnover occur at minima of the 2.37-Myr eccentricity cycle and nodes of the 1.2-Myr obliquity cycle. Because obliquity nodes and eccentricity minima are associated with ice sheet expansion and cooling and affect regional precipitation, we infer that long-period astronomical climate forcing is a major determinant of species turnover in small mammals and probably other groups as well.


Assuntos
Biodiversidade , Evolução Biológica , Clima , Roedores/fisiologia , Animais , História Antiga , Camada de Gelo , Espanha , Fatores de Tempo
15.
Nature ; 441(7093): 610-3, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16752441

RESUMO

The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.


Assuntos
Água do Mar , Temperatura , Clima Tropical , Animais , Regiões Árticas , Dinoflagellida/isolamento & purificação , Fósseis , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Efeito Estufa , História Antiga , Gelo , Oceanos e Mares , Esporos/isolamento & purificação , Fatores de Tempo
16.
Nature ; 435(7045): 1083-7, 2005 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15944716

RESUMO

At the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene-Eocene thermal maximum. The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates, resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually, comet impact, explosive volcanism or ocean current reorganization and erosion at continental slopes, whereas orbital forcing has been excluded. Here we report a distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge, which we term the Elmo horizon. Using orbital tuning, we estimate deposition of the Elmo horizon at about 2 million years after the Palaeocene-Eocene thermal maximum. The Elmo horizon has similar geochemical and biotic characteristics as the Palaeocene-Eocene thermal maximum, but of smaller magnitude. It is coincident with carbon isotope depletion events in other ocean basins, suggesting that it represents a second global thermal maximum. We show that both events correspond to maxima in the approximately 405-kyr and approximately 100-kyr eccentricity cycles that post-date prolonged minima in the 2.25-Myr eccentricity cycle, implying that they are indeed astronomically paced.

17.
Science ; 308(5728): 1611-5, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15947184

RESUMO

The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of approximately 2000 x 10(9) metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowered deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers water depth, are marked by a prominent clay layer, the character of which indicates that the CCD shoaled rapidly (<10,000 years) by more than 2 kilometers and recovered gradually (>100,000 years). These findings indicate that a large mass of carbon (>>2000 x 10(9) metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...